首页> 外文OA文献 >Synthesising 30 Years of Mathematical Modelling of Echinococcus Transmission
【2h】

Synthesising 30 Years of Mathematical Modelling of Echinococcus Transmission

机译:融合棘球Transmission病数学模型三十年

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background Echinococcosis is a complex zoonosis that has domestic and sylvatic lifecycles, and a range of different intermediate and definitive host species. The complexities of its transmission and the sparse evidence on the effectiveness of control strategies in diverse settings provide significant challenges for the design of effective public health policy against this disease. Mathematical modelling is a useful tool for simulating control packages under locally specific transmission conditions to inform optimal timing and frequency of phased interventions for cost-effective control of echinococcosis. The aims of this review of 30 years of Echinococcus modelling were to discern the epidemiological mechanisms underpinning models of Echinococcus granulosus and E. multilocularis transmission and to establish the need to include a human transmission component in such models. Methodology/Principal Findings A search was conducted of all relevant articles published up until July 2012, identified from the PubMED, Web of Knowledge and Medline databases and review of bibliographies of selected papers. Papers eligible for inclusion were those describing the design of a new model, or modification of an existing mathematical model of E. granulosus or E. multilocularis transmission. A total of 13 eligible papers were identified, five of which described mathematical models of E. granulosus and eight that described E. multilocularis transmission. These models varied primarily on the basis of six key mechanisms that all have the capacity to modulate model dynamics, qualitatively affecting projections. These are: 1) the inclusion of a 'latent' class and/or time delay from host exposure to infectiousness; 2) an age structure for animal hosts; 3) the presence of density-dependent constraints; 4) accounting for seasonality; 5) stochastic parameters; and 6) inclusion of spatial and risk structures. Conclusions/Significance This review discusses the conditions under which these mechanisms may be important for inclusion in models of Echinococcus transmission and proposes recommendations for the design of dynamic human models of transmission. Accounting for the dynamic behaviour of the Echinococcus parasites in humans will be key to predicting changes in the disease burden over time and to simulate control strategies that optimise public health impact.
机译:背景棘球co虫病是一种复杂的人畜共患病,具有生命周期和sylvatic生命周期,以及一系列不同的中间和定型宿主物种。其传播的复杂性以及在不同环境中控制策略有效性的稀疏证据,为针对该疾病的有效公共卫生政策设计提出了重大挑战。数学建模是一种有用的工具,可用于在局部特定的传播条件下模拟控制包,以告知分阶段干预措施的最佳时机和频率,以经济有效地控制棘球co虫病。本文对30年的棘球oc虫模型进行了回顾,其目的是辨别颗粒棘球and虫和多眼大肠杆菌传播模型的流行病学机制,并确定在这种模型中包括人类传播成分的必要性。方法/主要发现对截至2012年7月出版的所有相关文章进行了检索,这些文章从PubMED,Web of Knowledge和Medline数据库中识别,并审查了某些论文的书目。符合纳入条件的论文是描述新模型的设计或对颗粒状大肠杆菌或多眼大肠杆菌传播的现有数学模型的修改的论文。总共鉴定了13篇合格论文,其中五篇描述了颗粒状大肠杆菌的数学模型,八篇描述了多眼大肠杆菌的传播。这些模型主要在六个关键机制的基础上有所变化,这些机制均具有调节模型动力学的能力,从而对预测产生定性影响。它们是:1)包括“潜在”类别和/或从宿主暴露到传染性的时间延迟; 2)动物宿主的年龄结构; 3)存在密度相关约束; 4)考虑季节性; 5)随机参数; 6)包括空间和风险结构。结论/意义这篇综述讨论了这些机制可能对于将棘球chin虫传播模型包括在内的重要条件,并为动态人类传播模型的设计提出了建议。解释人类中棘球E虫寄生虫的动态行为对于预测疾病负担随时间的变化以及模拟优化公共卫生影响的控制策略至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号